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Abstract—Failures are not uncommon in production data
center networks (DCNs) nowadays, and it takes long time for the
network to recover from a failure and find new forwarding paths,
significantly impacting realtime and interactive applications at
the upper layer. The slow failure recovery is due to two primary
reasons. First, there lacks immediate backup paths for downward
links in DCN with multi-rooted tree topology. Second, distributed
routing protocols in DCN take time to converge after failures.
In this paper, we present a fault-tolerant DCN solution, called
F2Tree, that can significantly improve the failure recovery time
in current DCNs, only through a small amount of link rewiring
and switch configuration changes. Because F2Tree does not
change any existing software or hardware, it is readily deployed
in production DCNs, where other existing proposals fail to
achieve. Through testbed and emulation experiments, we show
that F2Tree can greatly reduce the time of failure recovery by
78%. Our experimental results also show that, for partition-
aggregate applications (popular in DCN) under various failure
conditions, F2Tree reduces the ratio of deadline-missing requests
by more than 96% compared to current DCNs.

I. INTRODUCTION

Data Center Network (DCN), which is the key infrastructure

of almost all the Internet services we rely on today, scales

larger and larger to meet the increasingly stringent demands

of users and service providers. However, as the number of

network equipments (e.g., switches, links) grows, network

failures1 can happen frequently [1, 2]. Furthermore, recent

studies [3, 4] have shown that failure recovery takes long in

the current production DCNs [5] running distributed routing

protocols such as OSPF [6] and BGP [7] in multi-rooted tree

topologies. The long failure recovery time significantly hurts

interactive real-time services such as search, web retail and

stock trading. For example, according to [8], to guarantee user

experience, most interactive real-time services need to meet

stringent service deadline considering both computational and

network latencies. This time constraint between the moment

when a query is originated and the moment when the results

have returned and been displayed can be as short as 300ms.

Furthermore, the time constraint for intra-DC tasks for these

services can be even lower than 100ms [8]. This further puts

a more stringent requirement on failure recovery time.
We illustrate the slow failure recovery problem using an ac-

tual testbed experiment. Using virtual machines interconnected

∗ Dan Pei is the corresponding author.
1In this paper, network failure is defined to be the failure of network

equipments related to data forwarding, such as links and switch or router
modules. We model all network failures as link failures for simplification.
For example, a whole switch failure is modeled as the failures of all its links.
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Fig. 1. 4-port, 3-layer fat tree and F2Tree: One downward link fails.
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(a) Influence to UDP throughput (duration of connectivity loss)
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(b) Influence to TCP throughput

Fig. 2. Failure of one downward link between ToR and aggregation switch
in the testbed: Influence to UDP and TCP flows’ throughput.

in VMware ESXi 5 [9], we have built a 4-port, 3-layer fat

tree topology as shown in Fig 1(a). Switches2 1∼8 (S1∼S8)

are top-of-rack (ToR), 9∼16 are aggregation, and 17∼20 are

core switches running OSPF in Quagga routing software [11],

respectively. At time 0ms, node S at the bottom left starts

to send a constant-rate UDP flow to the bottom right node

D, along the path (S-S1-S10-S20-S16-S8-D). Then at time

380ms, the link between S16 and S8 is manually shut down.

It takes S16’s failure detection mechanism about 60ms to

detect the interface failure. Then the OSPF LSA messages take

very little time to get propagated from S16 to the rest of the

network, including S1. S1, however, waits for OSPF shortest
path calculation timer (whose default initial value is 200ms,

but could be much longer in large operational network [12])

to expire. Then S1 calculates the routing table using current

2In the rest of the paper, switches in production DCN refer to layer 3
switches [3, 10] that run routing protocols.
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global link states. It then knows that the current path has

failed and chooses a new path (S1-S9-S17-S15-S8), and takes

another 10ms to update its forwarding table. In total, S1 takes

more than 272ms before it converges to a working path. Before

the convergence, the UDP packets are still forwarded to the

failed link of S16-S8, resulting a 272ms of connectivity loss

from S to D, as shown clearly in Fig. 2(a). While it is normal

for distributed routing protocols to have a second or even

minute level convergence time in the Internet [12, 13], such a

long duration of connectivity loss is apparently unacceptable

to a lot of realtime or critical applications in DCN [8]. In a

production DCN, the topology is much larger than our small

testbed and the failure recovery is more complicated and may

be much longer, resulting path inflation and temporary loops.

Furthermore, the holding timer for routing protocol calculation

will grow to be very large [14] in a large and unstable network,

which leads to a substantial duration of network disruption.
Our key observation from the above simple testbed experi-

ment is that the long duration of connectivity loss is due to two

reasons. First, in multi-rooted tree topology such as Fig. 1(a), a

downward link (e.g. from S16 to S8) lacks immediate backup

paths. As such, the switch that detects the failure (S16) cannot

find an immediate working rerouting path. Second, distributed

routing protocols such as OSPF take time to learn and react

to the failure and find a new working path.
In fact, above fundamental reasons for the slow failure

recovery in this example are no different from the slow

convergence problems in inter-domain routing (BGP) and

intra-domain routing (OSPF). Therefore, similar to solutions

in BGP and OSPF in the Internet, existing solutions to the

DCN slow failure recovery problem are along the following

two directions: 1) modifying routing protocol and changing

topology [3], and 2) modifying routing protocols and for-

warding planes without having to change topologies [4, 15].

More details can be seen in the last two rows in Table I.

However, because these previous proposals all rely on non-

trivial changes to routing and/or forwarding protocols, it is

very challenging to deploy these approaches in an existing
production DCN.

In this paper, we approach this problem from a different

angle. For an existing production DCN with multi-rooted tree

topology such as fat tree [16] and distributed routing protocol

such as OSPF3, we aim to accelerate its failure recovery

through only a small amount of link rewiring and switch
configuration changes, without changing any routing and

forwarding protocols or software. Our idea is very intuitive:

increasing the downward link redundancy in fat tree topology

via rewiring links, and configuring the switch such that it can

directly reroute via the newly added backup links when the

switch detects a link failure. Because no protocol or software

changes are needed, this approach is readily deployed in

existing production DCNs, which prior proposals [3, 4, 15]

3We focus on fat tree topology and OSPF for ease of presentation in the
rest of our paper, but the slow failure recovery and our proposed solution is
also applicable to other multi-rooted topologies such as Leaf-Spine [17] and
VL2 [10] and distributed routing protocols such as BGP. More discussions on
this can be found in §V.

fail to achieve.

Fig. 1(b) shows part of the topology according to our

approach, by only rewiring two links for each aggregation and

core switch. For example, for S16 (S15), we first remove two

links: one of S16 (S15)’s upwards link S16-S19 (S15-S18)

and one of its downward link S16-S7 (S15-S7). Then we use

the newly available ports to add two links between S16 to S15
to form a ring. As a result, when the link between S16 and

S8 fails, the number of immediate backup links (details in §II)

that can be used downward by S16 to reach S8 increased from

0 in fat tree to 2 in our approach. Then we configure two static

routes via the two links in the ring at S16, so that S16 can

quickly switch to one of these backup links (e.g., S16-S15)

after the failure of link S16-S8 is detected, without waiting

for OSPF to converge. Therefore, the packets destined to D
continue to be forwarded to S16, which successfully forwards

the packets along the path S16-S15-S8, greatly shortening

the failure recovery time. Of course, this path redundancy

is achieved at the price of less supported nodes, and the

seemingly decrease of upward link redundancy, which we

discuss in detail later (§II-D).

We call our above approach F2Tree (standing for Fault-

tolerant Fat Tree) in the rest of the paper. Our contributions

in this paper can be summarized as follows:

• We propose F2Tree, a readily deployable approach to

accelerate failure recovery time in existing production

DCNs without any protocol or software changes. F2Tree

keeps the merits of fat tree such as no oversubscription

and rich path diversity, only trading a little bisection

bandwidth for path redundancy (see §II-D).

• F2Tree significantly increases the path redundancy for

downward links in current multi-rooted fat tree DCN,

only through rewiring two links for each aggregation and

core switch. By adding several routing configurations for

aggregation and core switches, F2Tree offers immediate

backup paths against downward link failures. As a result,

such a switch can quickly locally reroute around the

failure of its downward link.

• Through testbed and emulation experiments, we have

shown that F2Tree can greatly reduce the time of failure

recovery by 78% compared to current fat tree. As a result,

F2Tree reduces the ratio of deadline-missing requests of

partition-aggregate applications by more than 96%, under

different failure conditions, compared to original fat tree.

We believe that the principle behind F2Tree, increasing path
redundancy and rerouting locally, is one promising direction

and could help with designing fault-tolerant DCNs.

II. F2TREE DESIGN

In this section, we first introduce the intuition behind the

design of F2Tree. Then, we present the F2Tree solution in

detail. Next, we discuss that how F2Tree handles different

failure conditions. Finally, we discuss the tradeoffs we made

in F2Tree to accelerate failure recovery.
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TABLE I
THE COMPARISON OF SCALABILITY AND DEPLOYMENT, FOR 3-LAYER DCNS BUILT WITH HOMOGENEOUS SWITCHES OF N PORTS, USING DIFFERENT

SOLUTIONS. (ASSUMING EACH DOWNWARD PORT OF TOR SWITCHES CONNECTING WITH ONE NODE.)

Switches consumed Nodes supported Modify routing protocol Modify data plane

Fat tree 5
4
N2 N3

4
n/a n/a

VL2 [10] 5
2
N N2

2
n/a n/a

F2Tree 5
4
N2 − 7

2
N + 2 N3

4
−N2 +N no no

Aspen tree [3] 〈f, 0〉∗ 5
4(f+1)

N2 N3

4(f+1)
yes no

F10 [15] 5
4
N2 N3

4
yes yes

DDC [4] n/a n/a yes yes
∗f is the fault tolerance value between aggregation and core switches (f ≥ 1).
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(c) 1 downward link & 1 right across link
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Core IP: 10.13.{0-5}.1

Agg IP:
10.12.{0-11}.1

ToR IP:
10.11.{0-7}.1

Host IP:
10.11.{0-7}.{2,3,4}

(d) 2 downward link & 1 right across link

Fig. 3. 6-port, 3-layer F2Tree: Different failure conditions. Fig 3(d) shows an example of address assigning. Hosts connected to each ToR are assigned with
addresses in the same subnet of each ToR.

A. Intuition of F 2Tree

ECMP Background. In current fat tree DCNs running

distributed routing protocols as Fig. 1(a) shows, ECMP [18] is

often used as the load balance scheme. With ECMP, a switch

stores the shortest paths with equal costs in its routing table.

Each five-tuple flow is forwarded along a particular (based on

hashing results) path out of the set of the shortest paths. If

the switch detects that the next hop of a path fails, it will just

eliminate this failed path from the set of the shortest paths,

and the forwarding can continue without any control plane

calculation if the set of the remaining shortest paths with same

path length is not empty.

For the ease of presentation, we first define a term of imme-
diate backup link for a certain link L. Once L fails, the switch
S directly connected to L can continue to use this immediate
backup link to forward packets that are originally forwarded
through L to their destinations, only with local information.
Thus, in original fat tree using switch with N ports, there are

N/2-1 immediate backup links for each upward link4 from

ECMP. However, a switch in original fat tree has no immediate

4Each link in DCN is assumed to have the same cost for simplification.

backup link for its downward links. Therefore, the switch that

detects its downward link failure cannot find an alternative

working route without triggering control plane calculation.

The goal of F2Tree is to add immediate backup links for the

downward link in fat tree, in order to accelerate recovery from

downward failures.

B. Topology & Working Schemes

Topology: In original fat tree as shown in Fig. 1(a), there

is no link between switches in the same pod5. Once a

downward link fails, packets in the detecting switch cannot

be immediately forwarded to neighbors in the same pod,

although the neighbors have working paths to the destination

(e.g. S15). F2Tree attempts to add immediate backup links

for downward links, utilizing these neighbor switches in the

same pod who still can successfully reach the destination. To

maximize bisection bandwidth, the original fat tree uses all

ports of a switch to interconnect with switches above and

below. Each switch within a same pod in fat tree has no

5According to [3], A pod is a set of switches that directly connected to the
same subtree (e.g. S9 and S10 in Fig. 1(a) are within a pod, connecting to
the same subtree of S1 and S2).
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links connected with each other. In contrast, F2Tree reserves

a downward and an upward port of each aggregation and core

switch to provide fault-tolerance as Fig. 3 shows. As we can

see in Fig. 3, the topology of F2Tree is almost the same as

fat tree except for a slight modification within each pod. Each

aggregation or core switch in F2Tree has two ports connected

to their neighbors in the same pod (the leftmost switch is

considered to a neighbor to the rightmost one). We call the

neighbors in the same pod of F2Tree as across neighbors,

and the links between across neighbors as across links. Thus,

the switches in each pod form a ring through the across links.

Assuming each switch has N ports in F2Tree, these imme-

diate backup links only cost 2 of the N ports of corresponding

switches. The rest N -2 ports of each aggregation or core

switch are half connected to switches in the layers above and

half below, exactly as in fat tree. As such, F2Tree increases the

immediate backup links for each upward and downward link,

from N/2-1 and 0 in original fat tree, to N/2 (including N/2-

2 ECMP links and 2 across links) and 2 respectively, only at

the cost of a negligible bisection bandwidth (discussed later).

Fast rerouting: We define fast rerouting as the process of

routing packets around failures with only local failure detec-

tion information and without control plane communication and

calculation. F2Tree accelerates the failure recovery by using

the newly added across links as immediate backup links and by

installing static routes directly into forwarding table. Therefore

switches that detect the failures can get rid of the time waiting

for communication and recalculation in control plane and FIB

updating, greatly reducing failure recovery time.

Next, we introduce our fast rerouting scheme more specif-

ically under typical DCN address assignment. According to

our interview with operators of one top global cloud provider,

usually switches in DCN bundle all ports into one layer 3

interface using one IP address. Hosts in each rack are assigned

addresses within the same subnet of each ToR switch they

connect to. Each ToR will redistribute (propagate) the subnet

address containing hosts below into OSPF. Fig 3(d) shows

an example of such DCN address assignment. For example,

S8 has an IP address of 10.12.0.1, S0 has an IP address of

10.11.0.1, and the subnet containing all the hosts below S0 is

10.11.0/24.

To acheive fast reroute, in each aggregation and core switch,

we add one static route to the prefix containing all hosts in the

DCN network (called DCN prefix), and one static route to the

prefix just covering the DCN prefix. Take Fig. 3 as an example,

this DCN prefix is 10.11.0.0/16, and the covering prefix is

10.10.0.0/15. These two backup routes are not redistributed to

OSPF, thus they are used only locally at each switch. Take

S8 as an example, one static route’s next hop is the rightward

across neighbor S9, and the other’s next hop is the leftward

across neighbor S10. The last two rows in Table II show the

two newly added static routes in S8’s routing table. These two

static routes serve as backup routes for the routes (through

both downward and upward links) to all the destinations in

10.11.0.0/16.

Note that the backup routes for all the addresses have shorter

length of prefixes than the route introduced by the routing

protocol, thus the backup ones have also been written in

the forwarding information base (FIB) before failure happens.

This design totally avoids the FIB update time, which would

normally take a substantial time for large networks [19].

These static routes are only used when S8 cannot find any

other routes to a specific destination, because they have shorter

prefix than the prefix originally in OSPF routes. For example in

Table II, normally, S8 only has the first two routes calculated

by the routing protocol for host D and S, which pass through

its downward and upward links respectively. The two added

backup routes (3 and 4) will not be stored in the routing

entry for D or S by original OSPF and ECMP. In F2Tree,

upon detecting the link S8-S0 fails, S8 realizes that D is not

reachable via 10.11.0.1. When a new packet destined to D
arrives, S8 looks up its forwarding table, and finds it can still

reach D via 10.11.0.0/16, and will directly forward the packet

via next S9, only incurring the normal FIB lookup time. And

if S9 is also detected as unreachable, the 4th route which has

a shorter prefix will be chosen and S8 will forward packets

through S10.

TABLE II
PART OF THE ROUTING TABLE OF S8 IN FIG 3. THE LAST TWO LINES

SHOW AN EXAMPLE OF CONFIGURATIONS TO USE IMMEDIATE BACKUP

LINKS FOR DOWNWARD AND UPWARD LINKS IN F2TREE. THE DCN
ADDRESSES ARE ASSIGNED AS FIG 3(D) SHOWS.

No. Destination Next Hop
1 D (10.11.0.0/24) S0 (10.11.0.1)

2
S20 (10.13.0.1)

S (10.11.4.0/24) S21 (10.13.1.1)
3 Prefix of all hosts (10.11.0.0/16) S9 (10.12.1.1)
4 Shorter prefix covering all hosts (10.10.0.0/15) S10 (10.12.2.1)

We deliberately configure the two backup routes with dif-

ferent prefix length. Because if the two backup routes have the

same length, a temporary loop may occur during fast rerouting

while the downward links of two adjacent switches in the same

pod both fail, as shown in Fig. 3(b). While S8 forwarding

packets to S9 after detecting the failure of its downward link,

S9 may forward those packets back to S8 by picking up one

of its two immediate backup links, because its downward link

fails as well. To avoid a potential forwarding loop under this

kind of conditions, we assign a longer prefix for the backup

route through the right across link than the one through the

left across link. With that, during fast rerouting, packets will

be forwarded rightward if the right across link works.

C. Handling Failures

After introducing the topology and working schemes of

F2Tree, we now comprehensively discuss how F2Tree uti-

lizes the two newly added immediate backup links to deal

with different kinds of failure conditions. Upon upward link

failure, F2Tree potentially performs better than original fat

tree, because it offers one more immediate backup link for

each upward link. However, because upward link failures are

already handled reasonably well using the ECMP scheme in

current production DCNs, we omit the analysis here due to
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the space limitation. In the rest of the paper, we focus on the

the failures of downward and across links. The way to handle

upward failures can be easily derived from the way to handle

downward failures.

We begin our discussion assuming there is a flow between

two end hosts belonging to different pods of aggregation

switches, such as S and D in Fig. 3. Without failures, this kind

of flow will traverse through the path from bottom to top and

top to bottom, as the red line in Fig. 3 shows. Then, we analyze

the performance of F2Tree, keeping the precondition that the

downward link of a certain switch x (Sx) fails, which is in the

flow’s downward forwarding path. F2Tree handles failures in

the same way regardless of whether Sx is an aggregation or a

core switch. Also, the combination of failures above different

layers will not affect the working scheme of F2Tree (shown

by experiments in §IV), because that the fast rerouting scheme

can work locally at a switch for each packet that arrives at this

switch. Therefore, due to the space limitation, we only present

analysis assuming Sx to be an aggregation switch, and only

consider the failures that happen in the same layer. Conditions

where physical path does not exist are beyond the discussion.

The failure conditions can be summarized as the following

four types:

1) The right across link of Sx and the downward link of
the switch right to Sx still work. Fig. 3(a) shows an example

under this condition, assuming Sx=S8. During fast rerouting,

S8 will forward the packets to S9 once the link failure is

detected. Then S9 will forward these packets to the destination

D.

2) Downward links of all the switches in the same pod right
to Sx and left to Sy fail, and Sy has a working downward
link to the destination (at least 1 switch between Sy and Sx).
Meanwhile, across links right to Sx and left to Sy are working.
Fig. 3(b) shows an example of this condition, with Sx=S8
and Sy=S10. During fast rerouting in this situation, S8 will

forward the packets to S9, and S9 will relay these packets to

S10 because its downward link fails as well. Finally, packets

will be forwarded to the destination through S10.

3) The right across link of Sx fails, while Sx’s left across
link and the downward link of the switch left to Sx still works.
This condition can be illustrated by the example in Fig. 3(c),

where Sx=S8. During fast rerouting under this condition, S8
will not forward packets to S9 because it detects failure of

both S0 and S9’s port. So S8 will choose the second backup

route, forwarding packets to S10 using its left across link.

4) The right across link of a certain switch (Sy) in the same
pod fails, and the downward links of those switches right to Sx
and left to Sy (include Sy) all fail (If Sy=Sx, the downward link
of the switch left to Sx should also fail). This is a much tougher

situation, as shown in the example in Fig. 3(d) (Sx=S8,

Sy=S9). Under this situation, fast rerouting of F2Tree will

fail. Specifically, packets will be bounced between S8 and

S9, before S8 knows the failure of S9’s right across link and

downward link, and calculates a new route. In this situation,

the time for failure recovery will degrade to that in fat tree.

Actually, the above four conditions have summarized all

the failure conditions above the same layer related to the

downward forwarding path (except the failures of both two

across links of S8, which F2Tree obviously degrades to fat

tree). Failure of a whole switch is also included, by modeling

as the failure of all of its links. For instance in Fig. 3, the

condition that S9 fails belongs to the 3rd condition mentioned

before. From the above discussion, F2Tree is shown to be

able to greatly reduce the time for failure recovery with fast

rerouting, under all the failure conditions with no more than 2

concurrent link failures. If there are 3 links concurrently failed

in a certain manner in the same pod (e.g. the 4th condition),

F2Tree will fail to fast reroute. However, we believe that this

extreme situation could rarely happen in real network (our

emulations later also confirm this). Moreover, if we reserve

more ports (e.g. 4) for across links and configure them as

immediate backup links, following the philosophy of F2Tree,

it is able to deal with this extreme condition as well.

D. Trading (negligible) Bisection Bandwidth for Downward
Redundancy

F2Tree’s topology is only slightly different from fat tree:

only two links of each aggregation and core switch are rewired

to form a ring in each pod. Also, the backup routes are not

used in forwarding unless failures happen. Thus, F2Tree keeps

all the merits of fat tree such as no oversubscription and rich

path diversity.

The design of F2Tree is to trade some bisection bandwidth

for the increase of path redundancy. However, the reduction

of bisection bandwidth can be negligible for a large fat tree

topology. To understand the cost more clearly, in Table I, we

compare the number of nodes supported (which reflects the ag-

gregate throughput of a non-oversubscribed network) in differ-

ent multi-rooted tree topologies, assuming using homogeneous

switches with N ports. F2Tree can support N3

4 −N2+N nodes,

which is only N2−N less than N3

4 nodes in standard fat tree.

Only smaller with a low-order terms, we can see that F2Tree

is able to support approximately the same number of nodes as

fat tree as the network scales larger. For instance, if 128-port

switches are used, F2Tree only supports about 2% nodes less

than original fat tree. However, other fault-tolerant topologies

such as Aspen tree improves the fault-tolerance at the cost of

much more aggregate throughput. Aspen tree supports only
1

f+1 of nodes of original fat tree, where f (always ≥ 1) is the

fault tolerance value between aggregation and core switches.

III. TESTBED EXPERIMENT

Prototype implementation: As introduced in Section I, we

rewire the 4-port, 3-layer fat tree into an F2Tree prototype,

as Fig. 1(b) shows. We have configured backup routes in

Quagga [11] for each aggregation (S9, S10, S15, S16) and

core (S17, S20) switch, to use the two across links as

immediate backup links for each downward and upward link.

This prototype is a small but full implementation of F2Tree

solution.

Experiment setup: We build a UDP and a TCP flow

respectively, from the leftmost node S to the rightmost node
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D in F2Tree prototype. During the data forwarding, we tear

down a downward link between ToR and aggregation switch

along the forwarding path, to evaluate the network perfor-

mance against failure. Links are torn down by shutting down

certain interface of the switches. The time for interface failure

detection is similar to the fast failure detection techniques such

as BFD [20] (about 60ms), thus approximating the real DCN.

The same experiments are also done in the fat tree prototype

shown in Fig. 1(a). Both UDP and TCP flows send a segment

of 1448 bytes data to the destination every 100μs. All other

settings are set as the default ones in Linux and Quagga.

TABLE III
RESULTS UPON FAILURE OF ONE DOWNWARD LINK BETWEEN TOR AND

AGGREGATION SWITCH IN THE TESTBED.

Duration of
connectivity loss

(us)
Packets lost

Duration of
throughput collapse

(us)

Fat tree 272847 1302 700000

F2Tree 60619 310 220000

Results: Fig. 2 shows the instantaneous receiving through-

put of both UDP and TCP flows, with a time bin of 20ms.

The red vertical line indicates the time when failure happens.

As we can see, both UDP and TCP flows in F2Tree recover

from failure much faster than original fat tree. In Fig. 2(a),

we can see that the UDP receiving throughput falls to zero

for about 60ms in F2Tree, while it lasts more than 270ms in

fat tree. This duration of throughput fall comes from the loss
of connectivity, during which packets of the flow fail to be

forwarded to the destination. We record the time of the last

UDP packet arrived at the receiver before this duration, and

the time of the first UDP packet just after this duration. The

time difference of the arrival of these two packets reflects the

duration of connectivity loss, with a time granularity of 100μs

(the packet sending interval). The detailed comparison of the

length of this duration and the number of lost packets is shown

in Table III. With no need of control plane calculation and

FIB update, the 60ms of connectivity loss in F2Tree shown

in the table comes from the time of failure detection, which

approximates the time scale of BFD. As for fat tree, there is

a duration of connectivity about 272ms. This duration mainly

consists of a 60ms period of failure detection, a 200ms period

of OSPF default initial shortest path calculation timer, and a

10ms period of FIB update. Also, the LSA propagation and

the CPU processing delay contribute a small part. Due to a

significantly shorter time of connectivity loss in F2Tree, the

number of packets lost has been reduced by 75%, compared

to fat tree.
Next, we discuss how failures impact the TCP flows in

F2Tree and fat tree, respectively. From Fig. 2(b) we can see,

the TCP flow in F2Tree has a significant shorter time for

throughput recovery than that in fat tree. We measure the

time when TCP throughput is lower than 1/2 of the average

throughput before failure happens (with time bin of 20ms), and

list it in Table III as the duration of throughput collapse. While

fat tree’s duration of throughput collapse is 700ms, F2Tree’s

is only 220ms. The big gap between them results from the

TCP retransmission timeout (RTO), which is 200ms in initial

as default. As stated before, after failure happens, there are

periods time of about 60ms and 270ms in F2Tree and fat

tree respectively, when the destination is out of connectivity.

During this time, packets of the TCP flow are all lost and incur

a retransmission after initial timeout of 200ms. In F2Tree,

the retransmitted packets successfully get to the destination.

However, the retransmitted packets in fat tree fail to reach the

destination because the connectivity has not been recovered

yet. Thus, it leads to another retransmission after a doubled

RTO, which increases another 400ms of throughput collapse.

This difference between the duration of connectivity loss has

greatly affected the performance of TCP flows. Setting a

shorter initial RTO down to hundreds of μs could successfully

reduce the duration of TCP throughput collapse both in fat

tree and F2Tree. However, it will not narrow the gap between

these two methods to be less than the difference between the

duration of connectivity loss shown in Table III. How to set

proper initial RTO is beyond the scope of our work.

From these results in the testbed experiments, F2Tree is

shown to have a much shorter failure recovery time than fat

tree. And the advantage would be larger as the network scales,

since it would consume much more time for updating FIB

and calculating OSPF shortest path [12]. Ideally, shortening

the OSPF calculation timer may accelerate the connectivity

recovery in fat tree. But a shorter timer may cause severe

routing oscillation and a large amount of calculation in real

DCN, because of the unstable state of the network. Thus,

the initial holding timer for OSPF calculation may be set

even longer to reduce the routing table calculations in the

operational network [12]. Moreover, it will even grow to be

as long as several seconds while the network is unstable (see

§IV-B). However, these delay can be gotten rid of in F2Tree,

using fast rerouting through immediate backup links.

IV. EMULATION AND PERFORMANCE EVALUATION

In this section, we evaluate the performance of F2Tree in

the emulation environment with a larger scale. First, we study

that how F2Tree performs under different failure conditions

discussed in §II-C. Then, we evaluate F2Tree’s improvement

to upper layer applications using the workload derived from

production DCNs. Prior fault-tolerant DCN solutions such as

Aspen Tree [3] and F10 [15] all fail to be readily deployed

in existing production DCNs, thus are beyond the scope of

comparison with our solution.

Emulation environment: In order to use realistic rout-

ing and forwarding implementation, we choose a feasible

software-based solution, using Quagga [11] software router

running OSPF and Linux network stack as the control and

data plane of our emulated network. We introduce these

real implementations into NS3 [21] through the Direct Code

Execution (DCE) [22] environment. DCE is a framework that

provides an environment to execute, within NS3, existing

implementations of userspace and kernelspace network pro-

tocols or applications. Thus, we can build networks of fat tree

and F2Tree topology within NS3, using switches and nodes
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TABLE IV
LABELS THAT REPRESENTS DIFFERENT FAILURE CONDITIONS IN AN 8-PORT 3-LAYER DCN

Label Failures Belong to which failure condition in §II-C
C1 1 link between ToR and aggregation switch 1st
C2 1 link between core and aggregation switch 1st

C3 1 link between ToR and aggregation switch & 1 link between core and aggregation switch 1st

C4 2 adjacent links between ToR and aggregation switches in the same pod 2nd

C5
All links between ToR and aggregation switches in the same pod

except the one of the left across neighbor
2nd

C6 1 link between ToR and aggregation switch & 1 right across link 3rd

C7 2 links between ToR and aggregation switches & 1 right across link 4th

implemented with Quagga and Linux. We implement real TCP

and UDP based applications on Linux, and install them on the

nodes in NS3 to generate different traffic.

ECMP is used in our simulation, just like in existing pro-

duction DCNs. Each link within DCN is set with a bandwidth

of 1Gbps, and a propagation delay of 5μs, to make a ∼ 250μs
round-trip-time (RTT) including transmission and processing

delay, which approximates the RTT in real data centers [23].

A 60ms failure detection delay and 10ms FIB update delay are

added to the emulation, according to the results measured in

our testbed. All the rest of configurations in F2Tree and fat tree

are left as default. We have emulated different scales of DCNs

on a powerful server (2.4GHz CPU, 12 cores), and found that

8-port, 3-layer DCN is the largest scale that could be emulated

in an acceptable time. Thus, we present the result of 8-port, 3-

layer F2Tree and fat tree DCN in this section as prior study [4].

However, we believe that F2Tree will outperform fat tree even

more as the DCN scales larger, because the control plane will

converge slower in a larger network [12], which will not affect

the time for failure recovery under most failure conditions in

F2Tree.

A. Handling Different Failure Conditions

Experiment setup: As shown in the testbed environment

before, F2Tree can gracefully handle single failure between

ToR and aggregation switch. Now, we conduct experiments

under different failure conditions, to evaluate F2Tree’s perfor-

mance comprehensively.

In these experiments, we also set up a UDP flow and a

TCP flow from the leftmost end host to the rightmost one.

During the data transmission, we inject 7 different types

of failure conditions (shown in Table IV) containing links

either along the path, or not on the path but may impact

the packet forwarding. These conditions have covered all the

failure conditions discussed in §II-C. C1 and C2 belong to

the first failure condition we discussed before, with Sx being

aggregation and core switch respectively. C3 is a combination

of C1 and C2, thus it also belongs to the first condition. C4

and C5 are special cases of the second failure condition, and

C6 belongs to the third condition. Finally, C7 is a tough and

rarely happened situation that belongs to the fourth condition

in §II-C. For C1 to C5, we compare the performance of F2Tree

and fat tree. For C6 and C7, we only evaluate F2Tree, because

they are specific failure conditions in F2Tree. All the link

failures in our emulation are bidirectional, and we plan to

consider more complicated failures mixed with unidirectional

and bidirectional links in our future work.

Results: Fig. 4 shows the duration of connectivity loss,

the number of packets lost of a UDP flow, and duration

of throughput collapse of a TCP flow both in fat tree and

F2Tree. For failure condition C1, F2Tree reduces the duration

of connectivity loss by about 78%, from 270ms to 60ms,

compared to fat tree. Also, the number of lost packets is

reduced by 75% in F2Tree compared to fat tree. As for the

TCP flow, there are 220ms and 610ms of throughput collapse

in F2Tree and fat tree, respectively. All these results are similar

to those in the testbed experiments analyzed before.

Fig. 5 demonstrates the variation of end-to-end delay during

the process of failure recovery under several representative

failure conditions. Except for the 270ms duration of connec-

tivity loss between time 100ms and 370ms, the end-to-end

packet delay in fat tree under C1 remains to be 100μs, which

consists of propagation, transmission and processing delay.

During the fast rerouting in F2Tree between time 170ms and

270ms in Fig. 5, packets successfully reach the destination

through backup paths with one extra hop. Thus, the end-to-

end is a slightly higher, which is 117μs during this period.

After the control plane converges at 270ms, the end-to-end

delay falls down to 100μs, the same as that in fat tree.

Besides the link above the ToR layer, we also consider the

condition that the link in the higher layer fails (C2) and the

situation that links from both layers fail together (C3). In C2

and C3, fat tree performs almost the same as C1. Compared to

C1, fat tree takes a little bit shorter time for LSA to propagate

to the ToR switch that is connected with the source end host,

which is negligible to the whole failure recovery time. For C2

and C3, F2Tree performs almost the same as in C1, which

verifies our analysis before. The results are shown in Fig. 4.

The end-to-end delay performance is the same as the one in

C1, which is omitted in Fig. 5 for brief.

C4 and C5 are tougher conditions for F2Tree belonging to

the second condition discussed before, with Sy right to Sx and

Sy left to Sx respectively. This could lead to a longer path

while using backup routes. As discussed before, under C4 and

C5, F2Tree has paths of more than one extra hop during the

fast rerouting period. This leads to a slightly longer end-to-end

delay during fast rerouting as shown in Fig. 5. However, these

slightly longer paths during fast rerouting negligibly affect the

up-layer performance, which is verified by the results in Fig. 4.

C6 belongs to the third condition discussed before in §II-C.
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Fig. 4. Results upon different failure conditions in an 8-port 3-layer DCN.

Under this condition, F2Tree performs the same as in C1,

except that packets are forwarded through the left across

link during fast rerouting. Furthermore, we evaluate F2Tree

under the extreme condition C7, which belongs to the fourth

condition in §II-C. F2Tree degrades to fat tree under this

condition (see Fig. 4 & 5), which confirms the analysis before.
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Fig. 5. Comparison of end-to-end delay during the process of failure recovery.

B. Impact to Partition-aggregate Workload

Experiment setup: Next, we evaluate F2Tree and fat tree

in a much more complicated condition with random failures,

with an input traffic workload derived from real operational

data centers [24]. The failed links are randomly picked among

all the links. The time between failures and the length of

lasting time both obey log-normal distribution, which derives

from the measurement results of operational DCNs [1]. We

inject a partition-aggregate workload to our DCN emulation

environment, following the convention of prior works [4, 15].

In this workload, we randomly pick some end hosts, each of

which sends a small TCP single request to each of 8 other

end hosts, and waits for a 2KB response from each machine.

This traffic pattern often exists in front-end data centers. We

also inject the background traffic coexisting with the partition-

aggregate requests in our emulation. The flow sizes and inter-

arrival intervals of the background traffic obey the log-normal

distribution derived from real operational DCNs [25]. We

measure the completion time of these requests, which means

all the 8 responses are received by the sender, under 1 and 5

concurrent failure conditions respectively. We have generated

more than 3000 such requests, and 1500 background flows

during 600s experiment time. About 40 and 100 link failures

are respectively generated in the 1 and 5 concurrent failure

conditions, during the experiment time.

Results: Following the convention of the literatures [4, 23],

we use deadline missing ratio as our main evaluation metric

in this section. Fig. 6(a) shows the ratio of requests that miss

the completion deadline (assuming to be 250ms according to

[23]), under two failure conditions in fat tree and F2Tree,

respectively. In fat tree, there are about 0.4% and 1.6% re-

quests, having completion time more than 250ms under 1 and

5 concurrent failure conditions. However in F2Tree, no request

is completed for a time longer than 250ms under 1 concurrent

failure, and only about 0.06% requests are completed after

the deadline under 5 concurrent failures. Compared to fat tree,

F2Tree reduces the ratio of deadline missing requests by 100%

and about 96.25% under these failure condition, respectively.
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Fig. 6. Impact to partition-aggregate workload, while experiencing different
number of concurrent failures (CF).

To be clearer, Fig. 6(b) shows the CDF of requests’ comple-

tion time longer than 100ms, both in fat tree and F2Tree. As

we can see, there are more than 0.4% requests taking longer

than 100ms to complete in fat tree, under the condition with

only 1 concurrent failure. Specifically, there are about 0.05%

requests delayed for about 600ms due to the duration of TCP

throughput collapse as analyzed before. Moreover, among all

the requests in fat tree, there are even more than 0.3% requests

completed after 1s, which is apparently unacceptable for upper

layer applications. Digging into the trace, we find that, due to

the frequent failures, large amount of LSAs are generated. This

leads to a dramatic growth of OSPF calculation timer up to

about 9s, caused by the exponential backoff scheme [14] to

adjust the hold time in OSPF. Thus, some requests are even

delayed for such a long time by these large timers in fat tree.

In contrast, due to the path redundancy and local rerouting in

F2Tree, packets can be forwarded through immediate backup

links without waiting for control plane communication and

calculation under only 1 concurrent failure, as analyzed before.

As a result, there are only about 0.04% requests completed

for about 200ms in F2Tree, which are delayed by the failure

detection time as stated before, under 1 concurrent failure.

As for a tougher case in which 5 failures occur concurrently,

the ratio of requests with completion time of more than 200ms

increases both in fat tree and F2Tree. However, F2Tree still
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performs much better than fat tree, by reducing the ratio

of those requests by 93.5%. Because of the large number

of concurrent failures, the 4th failure condition discussed in

§II-C has occurred in our experiment, which degrades the

F2Tree’s performance down to fat tree, and leads to a 9s

completion time for some requests waiting for large OSPF

calculation timers. However, even in such extreme conditions,

there are only about 0.03% requests taking that long time to

be completed.

V. DISCUSSION

In this section, we discuss how F2Tree can be adapted in

other existing DCN environments.
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Fig. 7. F2Tree for other multi-rooted tree topologies

Other Multi-rooted Tree Topologies: Not only for stan-

dard fat tree, F2Tree’s scheme (rewiring links and adding

backup routes) is also applicable to other multi-rooted tree

topologies such as VL2 [10] and two-layer Leaf-Spine [17],

helping to reduce failure recovery time. Fig 7 illustrates how

to rewire these topologies according to F2Tree’s scheme to

add path redundancy and reroute locally with proper switch

configurations. The details of rewiring and configuring switch-

es are similar to that in standard fat tree, which are omitted

in the interest of space. 1) Although there are only 2 tiers

in Leaf-Spine topology, it still lacks immediate backup link

for downward links. As the example in Fig 7(a) shows, if

link S7-S4 fails, original Leaf-Spine DCN needs to propagate

failure message and wait control plane calculation until S1
finds a new path (e.g. S1-S5-S4) to route around the failure.

In contrast, F2Tree for Leaf-Spine can locally reroute quickly

after S7 detects the failure, which costs far less time. 2)

VL2 has a denser interconnection than fat tree, which im-

proves its fault tolerance. For downward link between core

and aggregation layer, there are immediate backup links that

can be used for local rerouting. However, downward links

between aggregation and ToR switches still lack redundancy,

thus an aggregation switch has to wait for control plane

communication and calculation if any of these links fails. By

applying F2Tree scheme to VL2, we can improve its failure

recovery time as shown in the example in Fig 7(b).

Other Distributed Routing Schemes: Besides OSPF, other

distributed routing schemes used in DCN such as BGP [7] also

suffer from slow failure recovery problem [13]. Essentially,

both of them recover from failure slowly due to the same

reason, which is the need of control plane communication and

calculation under failures, in the lack of local rerouting paths.

Thus, F2Tree is also applicable to the DCN running distributed

routing schemes other than OSPF.

Centralized Routing DCNs: As for multi-rooted fat tree

DCNs with centralized routing schemes such as [26], F2Tree

can also help to improve the failure recovery. Originally, when

a failure happens in these centralized routing DCNs, the detect-

ing switch will pass the failure message up to the controller.

Then the controller calculates new routing paths using global

link message, and delivers the new routing tables to affected

switches. Besides the time for centralized calculation, in the

worst case, original centralized routing DCNs require one

message from the switch detecting failure to the controller,

and one message from the controller to each affected switches.

As the DCN scales larger, the communication and processing

will take quite a long time, causing a substantial duration

of connectivity loss upon failures. Again, F2Tree’s scheme

can be applied to centralized routing DCNs, by rewiring two

links in each pod of the aggregation and core layer. By

adding backup paths in the corresponding switches’ routing

table, switches could locally reroute around failures, before

uploading and waiting for the new routes calculated by the

controller. Therefore, we believe that our proposed scheme

in F2Tree can also significantly reduce the time for failure

recovery in centralized routing DCNs, especially in a large

scale network. A more thorough study on F2Tree’s scheme in

this environment is part of our future work.

VI. RELATED WORK

DCN fast failure recovery: Recently, there are several

related works [3, 4, 15] (see Table I) on improving network

fault tolerance in the context of modern DCNs. Different

from F2Tree, they accelerate failure recovery by adding new

networking protocols, or even new data plane forwarding

hardware. Thus, they are not readily deployed in existing

production DCNs.

Aspen Tree [3] requires a change to the fat tree fabric

and a new routing protocol. It shares the same intuition as

F2Tree to reduce the failure recovery time by increasing the

path redundancy in current fat tree DCNs, but in a different

way. Switches in the upper layer connect to each pod below

with more than one link in Aspen Tree. Through a new failure

reaction and notification protocol combining with the modified

topology, Aspen Tree shortens the routing convergence time

compared to fat tree. However, except introducing a new

protocol, the modification to original topology is at the expense

of more than half of the network bisection as fat tree (see

Table I). Moreover, Aspen Tree only has immediate backup

links for downward links in the fault-tolerant layer, which

may still incur a substantial time for recovery from downward

failures at other layers.

DDC [4] requires both a new routing protocol and data

plane forwarding hardware. Before control plane converges
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after failures, DDC will reverse a packet’s forwarding direction

once it encounters failure. Packets will be bounced in the

network, according to an ingenious algorithm, and finally get

to its destination. However, packet bouncing in DDC could

greatly inflate the paths and may cause congestion due to the

lack of global control. Furthermore, the characteristic of fat

tree topology may cause the packet bouncing to its sender

switch to find an alternate path under certain failures, which

incurs a longer delay and potential congestion.

Unlike the works mentioned before, F10 [15] presents a

whole new fault-tolerant DCN solution. F10 combines new

topology, failover and load balancing protocols, and failure

detector to provide a completely novel solution for fault-

tolerant centralized routing DCNs, thus not applicable to

existing production DCNs.

Existing fast rerouting schemes: There are also other

existing fast rerouting (FRR) schemes designed for IP net-

work, such as MPLS Fast Reroute (MPLS FRR) [27]. It is

commonly used to protect an individual link by providing a

backup path, which can route traffic around failure. There are

two major differences between F2Tree and MPLS FRR. First,

MPLS FRR itself does not offer additional path redundancy,

it just speeds up the process of switching to the backup

path. Second, the backup path in MPLS FRR is manually

configured based on additional lower layer information and

non-trivial algorithms such as shared risk groups. In multi-

rooted tree DCNs that lack redundancy for downward links,

it is inherently hard to provide planned backup paths for all

complicated failure situations, which needs extremely careful

pre-configuration. In contrast, the backup route configuration

in F2Tree is very simple and is similar at each switch (see the

last two lines in Table II). Thus F2Tree is much more practical

to be deployed in existing production DCN than MPLS FRR.

VII. CONCLUSION

In this paper, we present a readily deployable fault-

tolerant solution called F2Tree for existing production DCNs.

Through only rewiring two links and changing configurations,

F2Tree significantly increases downward link redundancy and

achieves local fast rerouting for downward link failures, great-

ly accelerating the failure recovery and improving upper-layer

application’s performance.

F2Tree is one important step towards improving the fault-

tolerance of existing production DCNs. We believe that the

principle behind F2Tree, increasing path redundancy and
rerouting locally, is one promising direction which we plan

to further study in our future work.
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