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Abstract— As mobile Internet is now indispensable in our
daily lives, WiFi’s latency performance has become critical to
mobile applications’ quality of experience. Unfortunately, WiFi
hop latency in the wild remains largely unknown. In this paper,
we first propose an effective approach to break down the round
trip network latency. Then we provide the first systematic study
on WiFi hop latency in the wild based on the latency and WiFi
factors collected from 47 APs on T university campus for two
months. We observe that WiFi hop can be the weakest link in
the round trip network latency: more than 50% (10%) of TCP
packets suffer from WiFi hop latency larger than 20ms (100ms),
and WiFi hop latency occupies more than 60% in more than
half of the round trip network latency. To help understand,
troubleshoot, and optimize WiFi hop latency for WiFi APs in
general, we train a decision tree model. Based on the model’s
output, we are able to reduce the median latency by 80% from
50ms to 10ms in one real case, and reduce the maximum latency
from 250ms to 50ms in another real case.

I. INTRODUCTION

As mobile Internet is now indispensable in our daily lives,
WiFi’s latency performance has become critical to mobile
applications’ quality of experience for the following reasons.
First, WiFi has become the primary Internet access method.
In 2013, 55% of the Internet traffic traverses WiFi as the last
hop [1]. Second, users expect fast response time from mobile
applications. [2] shows that if the page load time is larger
than 3 seconds, 40% of users will abandon the pages. It also
indicates that nearly 47% of web users expected a web page
to be loaded within 2 seconds. Third, majority of the mobile
applications rely on HTTP protocol, which is sensitive to
network latency. [3] shows that every 10 milliseconds latency
increase on broadband access will cause 1000 milliseconds
increase in Web page load time. Fourth, the WiFi interference,
when presents, can cause long packet latency at the WiFi hop.
A back-of-envelope calculation using the above numbers from
[2] and [3] shows that, WiFi hop latency should be under a
stringent threshold of 20∼30ms in order to satisfy the user
expectations.

Despite its importance, WiFi hop latency in the wild re-
mains largely unknown, probably due to the lack of effective
measurement methodologies. In this paper, we conduct the
first systematic study to answer the following three important
questions regarding WiFi hop latency and WiFi factors in the
wild:

• What does the WiFi hop latency look like in the wild?
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• Which factors influence the WiFi hop latency the most?
• How to optimize WiFi hop latency in the wild?

This paper makes the following contributions.
First, we propose an approach called WiLy (WiFi hop

Latency) that effectively breaks down the Round Trip Network
Latency (RTNL, which is RTT minus the server processing
time. More details are in §II-A) of TCP packets into uplink
wireless latency (UL), wired network latency (WL), and down-
link wireless latency (DL). WiLy can accurately measure DL
for all TCP packets, and use the accurately measured UL and
WL for TCP packets in 3-way handshake to approximate UL
and WL of other TCP packets. WiLy approach does not require
any client-side instruments, and can be deployed on OpenWrt-
compatible APs without any support from WiFi chip vendors.
To the best of our knowledge, WiLy is the first such approach
reported in the literature.

Second, we present the first systematic study on WiFi hop
latency in the wild. 47 OpenWrt-based Access Points (APs)
(with WiLy enabled) were used by student volunteers in T
university campus as their primary access to the Internet. We
measured WiFi hop latency and WiFi factors (such as RSSI,
retry ratio, airtime utilization) for a continuous period from
20thMay to 20thJuly, and accumulated more than 2 terabytes
of data. We observed that for certain APs, more than 50% of
TCP packets suffer from WiFi hop latency larger than 20ms,
and 10% of TCP packets have WiFi hop latency larger than
100ms. It is surprising that the WiFi hop latency takes more
than 60% of RTNL for over half of cases. WiFi, the primary
last-hop Internet access method, has become the weakest link
in the round trip network latency in many cases.

Third, utilizing the WiFi factor dynamics in our large data
set, we train a generic decision tree model which can provide
optimization guidance to both our APs or other APs. 1) The
interpretable decision tree shows which WiFi factors have the
most important influence on the latency. For example, we
observe there is an over 67% possibility to have undesirable
latency experience when the airtime utilization is larger than
55%. 2) In one real case, we use our general Decision Tree
to classify packets with their WiFi factors. The classification
results show that the main cause of this AP’s long latency
is high airtime utilization. After switching to another channel
whose airtime utilization is 8% lower, the AP’s largest latency
was reduced from 250ms to 50ms. 3) In another real case, the
classification results show that client RSSI is the problem.
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Fig. 1. Example of round trip time RTT=RTNL+S.

Relocating the AP reduced its median latency by 80% from
50ms to 10ms.

II. BREAKING DOWN NETWORK LATENCY

In this section, we first describe round trip network latency
(RTNL, RTT minus the server processing time) using the
life time of involved packets. Next, we introduce our data
collection platform and methodology. At last, we describe our
approach WiLy to breaking down the network latency into
different parts using TCP 3-way handshake packets and data
packets respectively.

A. Timestamps in Round Trip Network Latency

With the purpose of studying the RTNL, we first study the
life of a packet p generated from the user and its response
packet q generated by the server in a round-trip communi-
cation, to extract latency component. We focus on the TCP
packets because TCP is the dominant transport protocol [4],
[5]; and HTTP, today’s most popular application protocol,
which is delay sensitive [3], is based on TCP protocol. Now
we take a look at the lifetime of TCP 3-way handshake to
study each part of network latency during a RTNL.

Fig. 1 shows an example of the packets’ life in a round-
trip communication in the TCP 3-way handshake, and what
latency they will encounter. In this example, p is the TCP
SYN packet, and q is the TCP SYN-ACK packet.

At the very beginning, packet p is generated by user
equipment (UE) at time t0. After traversing queuing time,
channel backing off time, transmission time and potential
packet retrying time, p reaches the AP’s wireless NIC at t

′

1.
The time from t0 to t

′

1 is defined as WiFi uplink latency,
labeled as UL.

As soon as p arrives at the AP’s wireless NIC, it will be
processed and forwarded to the AP’s wired NIC. We use t1
to denote the time when p reaches the wired NIC. t1 − t

′

1 is
the processing latency of AP, labeled as PL. After that, AP
waits until time t2 to receive the response packet q arriving at
its wired NIC. The elapsed time t2 − t1 − S is called wired

latency, which is denoted as WL. S is the processing time
on server side. WL mainly consists of network latency on the
wired Internet between the AP and the server.

When q arrives at the AP’s wired NIC, it will be processed
and forwarded to the wireless NIC. We use t

′

2 to denote the
time when q reaches the wireless NIC and waits in the sending
queue to be sent out. Similarly, t

′

2−t2 is the processing latency
of AP, i.e. PL. When q arrives at wireless NIC of AP, it
also experiences the queuing time, channel backing off time,
transmission time, and packet retrying time before the MAC
ACK from UE is successfully received by the AP. We use t3 to
denote the time when q reaches the UE, and use t

′

3 to denote
the time when q’s MAC ACK from UE is received by the AP.
Similar to UL, the time from t

′

2 to t3 is called WiFi downlink
latency, denoted as DL. By now, p,q finish their travels in a
round-trip communication. Time from t0 to t3 is defined as
the round trip time (RTT). Here, RTNL = RTT − S.

B. Data Collection Platform and Methodology

1) Platform: Our data is collected through a real world
deployment within a China’s University T , which has about
42,000 students and 11,000 faculty and staff members. We
distributed 47 access points (APs) to students in T cam-
pus for free and let them use these APs as their primary
method to access the Internet. All the distributed APs are
NETGEAR N750 WiFi Dual Band Gigabit Router Premium
Edition (WNDR4300). Each AP has a 560MHz AMD CPU,
128MB DRAM, 128MB Flash Memory, four 1Gbps LAN
ports, 1 1Gbps WAN port and two Atheros wireless interfaces
(one b/g/n and one a/b/g/n).

Among these 47 APs on T campus, 44 APs are deployed
in the student dorms while the rest in graduate student offices.
On each floor of different dormitory buildings, the number
of rooms varies from 20 to 40, with the same room size of
5× 4m2.

2) Data Collection: We implement a lightweight user-level
measurement program WiLy on top of each AP’s operating
system (OpenWrt Barrier Breaker [6] version). WiLy can
be deployed on any OpenWrt-compatible APs without any
support from WiFi chip vendors. WiLy continuously collects
data which include i) abstract information of packets from the
real traffic and ii) WiFi factors that can reflect current WiFi
environment characteristics.

Packet capturing: We use the standard libpcap [7] library
to capture packets in real traffic through the AP. In this paper,
we take TCP packets as our study sample, which most of
the Internet services are based on [4], [5]. Unlike UDP, the
reliable communication manner (e.g. immediate ACK for SYN
packet) of TCP helps us to extract the network latency from
the whole RTT more accurately, and avoids conflating with the
up-layer application latency. For the privacy and performance
concerns, we only extract the following fields of a TCP packet:
IP address, Sequence Number, Acknowledgment number. All
the IP addresses are anonymized and cannot be traced to
a certain user. The Sequence Number and Acknowledgment
number are used to reconstruct the TCP interactions. We also



record the AP’s system timestamps when each TCP packet
arrives at and/or leaves AP’s certain NICs, to further extract
network latency. During the two months from May 20th 2015
to July 20th 2015, we have collected 2 terabytes data in total
from the 47 active APs. All the generated data are compressed
and synced to the server using rsync tool [8] every 2 minutes.

C. Breaking Down RTNL of TCP 3-way Handshake in the
Wild

After showing the anatomy of the TCP 3-way handshake,
we break down its round-trip latency into several individual
parts (UL, WL, DL)1. However, the practical challenge is how
to measure these latencies while we can only directly measure
the seven AP timestamps shown as ovals in Fig. 1. Specifically:

• WL: WL= t2− t1−S. The wired latency can be directly
calculated using t2, t1, which are both available by
recording the time when packets arrive at the wired NIC
in the AP. Note that the processing time (denoted as S)
on server side is negligible for TCP 3-way handshake
because there is little processing time for TCP SYN
packet on the server. We thus have WL≈ t2− t1 for TCP
3-way handshake.

• DL: DL= t3 − t
′

2. Approximating t3&t
′

2: The first
challenge WiLy needs to address is how to measure t3 and
t
′

2. t
′

3 can be directly measured at the AP. Once the MAC-
layer acknowledgement of q arrives at wireless NIC, the
driver of wireless NIC will call a function to report that
q is delivered and forward q to the capturing program
listening on the wireless NIC where q is timestamped.
This time is recorded as t

′

3. Then we can use t
′

3 to
approximate the t3 because: 1) MAC ACK will not be
queued at UE side and the MAC ACK’s channel backing
off time can be neglected because MAC ACK has higher
priority than other packets [9], 2) the transmission time of
MAC ACK can be neglected because of the small packet
size ( 14∗8

6Mbps ≈ 19us), 3) the frame error of MAC ACK
rarely happens and can be ignored according to [10]. For
t
′

2, we use t2 to approximate it. The actual measurement
results confirm that the timestamp gap between t2 and t

′

2,
i.e., PL is small enough and can be neglected compared
with DL. Similarly, we have ti ≈ t

′

i, i = 1, 2, 4.
Matching a wired packet with its corresponding
encrypted wireless packet: Another challenge of WiLy
is that, given t

′

3 is obtained from the wireless NIC
while t2 is got from the wired NIC, how can we get
the corresponding t

′

3 and t2 pair which belongs to the
same packet q? SHAMAN [11] merges the wired trace
and wireless trace by matching the content of packets
one by one. However, it is impractical for measurement
in the wild because the majority of real world APs
(especially residential ones) encrypt the outgoing packets
from AP using the SSID password. This encryption
makes the wireless packets obtained from the wireless
NIC unrecognizable for matching with the wired packets.

1PL is less than 1ms in our measurement result and can be ignored.

 0

 50

 100

 0.1  1  10  100  1000  10000

C
D

F(
%

)

DL+UL (ms)

office rush hour
office normal hour

dorm rush hour
dorm normal hour

Fig. 2. Distribution of WiFi hop latency (DL+UL) in four different classes.
We use UL measured using 3-way handshake to approximate the lower bound
of other TCP packets’ UL. We aggregate the whole data of two months in
each class together.

To address this challenge, we make small modifications
in the driver of OpenWrt APs. We embed time t2 in
an in-kernel structure of data packets which will remain
intact in the AP driver’s buffer until its 802.11 MAC
ACK is received at t

′

3. At this time this packet with t2
timestamp embedded will be forwarded to libpcap, and
we can retrieve the t2 from the 802.11 MAC ACK packet.

• UL: The exact uplink latency starting from the UE is
t
′

1− t0. t0 is the time when client prepares to send p (the
SYN packet). However, we cannot get t0 without user-
side instruments, thus we are not able to directly measure
the exact uplink latency t

′

1− t0. Instead, we use the next
uplink packet TCP ACK’s UL (t

′

4 − t3) to approximate
UL= t

′

1−t0, by having two assumptions. First, we assume
the WiFi environment factors are similar between t0 and
t3. This is because t0 to t3 is a relatively short period
of time during which there are little changes on WiFi
factors. Second, we assume the UE immediately sends
out the TCP ACK packet after receiving the TCP SYN-
ACK packet without being delayed by the delayed ACK
mechanism [12], which holds true in reality. Similar to
the case in DL, we use t

′

3 to approximate t3, and then
we get UL≈ t′4 − t

′

3.

D. Breaking Down RTNL for TCP Data Packets

We can actually measure DL for TCP data packets2 fairly
accurately as well. For data packets, DL≈ t

′

3 − t2, and both
t
′

3 and t2 can be measured accurately on the AP, which is the
same as the TCP 3-way handshake packets.

Our definition of WL of regular TCP packets is the round
trip network latency on the wired Internet between the AP
and the server, and it does not include the server processing
delay S. As the delay and congestion status of wired link is
relatively stable, we argue that WL is primarily determined
by the propagation delay between the AP and the server, thus
using WL measured with 3-way handshake is a reasonable
approximation for WL of regular TCP packets.

To accurately measure UL of regular TCP packets is chal-
lenging without the help of user-side instruments. However,
we can use the UL measured using the nearest previous TCP
3-way handshake packet as the rough lower bound of regular

2In the paper, the TCP data packets used in measuring DL include pure
DATA packets, pure DATA-ACK packets and DATA-ACK packets piggy-
backed with data.
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packets and data packets. For UL and WL of a specific DATA packet, we use
the nearest previous 3-way handshake packet’s UL and WL to approximate
them.

TCP packet’s UL. This method underestimates the UL of
regular TCP packets for the following reason. DATA packets
may have larger size than 3-way handshake ACK packets3,
thus they are more likely to be interfered by other APs because
their receiving time is longer than ACK packets’, and have a
longer UL. Note that the UL of a regular TCP packet starts
when TCP hands the packets to the OS then to the 802.11
MAC, thus its UL does not include the delay at the UE due
to delayed ACK.

III. MEASUREMENT RESULTS OF NETWORK LATENCY

In this section, we use our WiLy approach described in §II-C
and §II-D to measure the RTNL (round trip network latency)
in our deployed APs. First, we calculate the CDF to show how
the WiFi hop latency looks like in the wild. Then we break
down the RTNL into WL, DL, and UL. We find that there
exist APs whose network latencies are dominated by WiFi
hop latency. In this paper, all our measurements are done on
2.4GHz band, which has more users than 5GHz. However, our
measurement and analysis methodologies are also applicable
to 5GHz.

A. First View of WiFi Hop Latency in the Wild

Based on locations, the APs are divided into two cate-
gories: office AP and dorm AP. According to the measurement
work [13] based on the EWLAN SNMP data provided by
T campus, we define rush hour as the hour with the largest
EWLAN traffic volume over the day, which indicates more
potential interference around, while the rest marked as normal
hours. Rush hour is from 16:00 to 17:00 and 23:00 to 24:00 for
office and dorm APs, respectively. Note that, this office is the
department of computer science which consists of graduate
students and professors. There is no exact closing time for
the graduate student’s office, and people in graduate student’s
office will leave for dinner after 17:00 and few will come back
to their work. Before they leaving for dinner, people in office
tend to generate more traffic for entertainment, e.g., watching
video. According to [13]’s result, the overall traffic volume of
office AP in rush hour is 3.5× larger than 18:00 to 19:00 and
1.7× larger than 10:00 to 11:00.

3We investigate the packet size distribution of uplink which shows that for
about 55% uplink packets, their packet size is the same with handshake ACK
(pure ACK) packet (i.e., 54 bytes ). The rest 45% has a larger packet size.

Using these classification schemes, we define four non-
overlapping classes: office rush hour, office normal hour,
dorm rush hour and dorm normal hour. Fig. 2 shows
the CDF of WiFi hop latency for four classes based on the
whole dataset. As expected, the WiFi hop latency is larger
in rush hour than in normal hour for both office and dorm
APs. Moreover, we find that office APs have larger WiFi hop
latency than dorm APs because of the poor WiFi environment
surrounding the office APs, which will be more thoroughly
explained in §IV. We observe that for office APs, more than
50% of TCP packets suffer from WiFi hop latency larger than
20ms, and 10% of TCP packets have WiFi hop latency larger
than 100ms. Dorm APs also have quite a long tail latency and
10% of packets’ latencies are larger than 30ms.

B. CDF of Different Parts in RTNL

Using the aforementioned WiLy approach in §II-C and
§II-D, we break down the RTNL into UL, WL, DL. We show
the WiFi hop latency ratio of the overall RTNL ( UL+DL

UL+DL+WL )
based on the same dataset in Fig. 3. We calculate the WL
for domestic and foreign servers. Foreign servers have much
longer WL due to longer physical distance (thus longer prop-
agation delay). Furthermore, we count the number of wired
packets and find that packets to/from domestic servers occupy
more than 98% of overall wired packets. In Fig 3, for nearly
50% of cases, WiFi hop latency occupies over 60% of RTNL
of domestic services, which means that WiFi, the primary last-
hop Internet access method, has become the weakest link in
the round trip network latency in many cases.

IV. ANALYSIS OF WIFI FACTORS

After breaking down the RTNLs in §III, we have an
overview of WiFi hop latency in the wild. In this section
we mainly focus on the WiFi factors and their relationship
with WiFi hop latency, and we want to answer the following
questions.

• What does the distribution of WiFi factors look like?
• How are WiFi factors and WiFi hop latency correlated?
• Which factors influence the WiFi hop latency the most?
We first describe how to extract WiFi factors from the

collected dataset. Then we calculate the CDF of WiFi factors
to see the difference between dorm APs and office APs,
rush hour and normal hour. Thirdly, we visualize the results
to see if there exist linear relationships. At last, we use
Kendall correlation and relative information gain to quantify
the importance of certain WiFi factors. It is noteworthy that
all the measurement results in this paper are based on our
particular dataset which is collected under the environment
described in §II-B. But the methodology of measurement and
optimization in the following sections can be applied to other
datasets.

A. WiFi Factors Statistics

We summarize all the WiFi factors collected from the APs
in Table I. OpenWrt offers built-in command line tools (4th
column in Table I) which enable us to collect various WiFi



TABLE I
WIFI FACTORS WE USED IN THIS PAPER. UE REPRESENTS USER EQUIPMENT ASSOCIATED ON AP (ACCESS POINT).

Abbreviation WiFi factors Description Generated By
AU airtime utilization % of channel time used by all the traffic iw info
Q queue length snapshot Number of packets queued in hardware queue. debugfs

RR retry ratio %packets retried in IEEE 802.11 MAC-layer. iw info
RSSI RSSI Received signal strength of UE associated on AP. iw info
Ttx transmitting throughput Bytes sent to UE every 10s. ifconfig info
Trx receiving throughput Bytes received from UE every 10s. ifconfig info

RPR receiving physical rate Snapshot of physical rate for receiving packets from UE. iw info
TPR transmitting physical rate Snapshot of physical rate for sending packets to UE. iw info

factors that can comprehensively reflect current network envi-
ronment. All collected WiFi factors can be roughly classified
into two categories: AP based information (upper part of the
Table I) and AP-CLIENT pair based information (lower part
of the Table I). [14] uses some of listed factors to estimate the
throughput. Later we will select some of these characteristics
as features to train the machine learning model.

We collect these factors every 10 seconds to lower the
overhead. Note that we collect Trx and Ttx mainly to reflect
the traffic demands of AP users in 10 seconds. It is not
necessary to collect Trx and Ttx more frequently, considering
the overhead to APs. For the rest of the factors, we have swept
the sampling intervals from 20ms to 10s, and the error range
stayed within 3% (using measurement results at finest interval
20ms as the ground truth). Thus 10s sampling interval is a
reasonable tradeoff between accuracy and overhead.

B. CDF of WiFi factors

In §III-A, we show the CDF of WiFi hop latency under
different temporal and spatial conditions, i.e., dorm rush hour,
dorm normal hour, office rush hour and office normal hour. We
also calculated the CDF of these four non-overlapping classes
for WiFi factors of Table I to explain why the WiFi hop latency
in office is larger than dormitory. We omit the CDF figure
because of the space limitation. The median AU of office APs
is 0.45, which is larger than the median value 0.42 measured
by dorm APs. We also count the number of APs in dorm
and office environment. The number of APs are 120 and 24
in office and dorm environment, respectively. These numbers
show that there are larger possibilities for office APs suffering
from carrier sensing and hidden terminal interference. Besides,
the median RSSI of office APs is -55dbm, which is smaller
than the median RSSI, -46dbm, of dorm APs. RSSI indicates
the measured signal strength of clients associated on the AP.
In summary, office APs have larger possibility to suffer from
heavier interference and lower RSSI problem, which are the
main causes of the higher WiFi hop latency of office APs.

C. Preliminary visualizations of correlation between WiFi
factors and latency

We plot Fig. 4 to understand how WiFi factors influence
the WiFi hop latency. Y axis represents the corresponding DL
or UL, and X axis in each subfigure represents a certain kind
of WiFi factor. We bin the factors using different intervals

TABLE II
MEDIAN VALUE OF KENDALL SCORE AND RELATIVE INFORMATION GAIN
(RIG) OF DIFFERENT APS WHICH IS MEASURED BETWEEN WIFI FACTORS

AND CORRESPONDING UL OR DL.

Quality metric Kendall Score RIG
AU 0.86 0.05

RSSI -0.5 0.06
RR 0.4 0.08
TPR -0.3 0.11
RPR -0.2 0.09
Trx -0.17 0.01
Q 0.15 0.007
Ttx -0.006 0.02

based on their properties: 10Mbps in TPR, RPR, 10dbm in
RSSI, 0.1 in RR, AU, 10 in Q and 20Kbps in Trx, Ttx. We
use the following statistical summary indicators for each bin’s
latency: average, median (50th percentile) and 90th percentile.
We plot the graph of DL with factors AU, RR, Q, TPR, and Ttx
because they mainly affect DL. Similarly, we plot the graph of
UL with factors RSSI, RPR and Trx because they mainly affect
UL. From Fig 4, we can divide the factors into two types: (1)
factors which show relatively clear relationship with latency
(AU, RR, TPR, RSSI, Q, RPR), either negative or positive. (2)
factors which have no clear relationship with latency (Trx,
Ttx).

D. Quantifying the relationship

In this part, we mainly study the Kendall correlation and
Relative Information Gain which are used in [15]. By quan-
tifying the relationship between WiFi factors and WiFi hop
latency, we can get more information of the middle steps for
the machine learning model in §V. The information gain also
helps guide the feature selection procedure of the Decision
Tree in §V.

1) Correlation: To compare among different factors, we
choose Kendall correlation as a metric. This is because Kendall
does not need the data obeys certain distribution, e.g., Guassian
distribution. After binning the value of WiFi factors using
the same interval as §IV-C, we calculate the average value
of corresponding DL or UL that falls into this bin. Then we
compute the Kendall correlation score between DL or UL and
different WiFi factors for each AP-CLIENT pair. The median
Kendall scores of different pairs are shown in the second
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Fig. 4. Qualitative relationship between WiFi factors and latency on DL or UL aggregated over all user equipments and APs.

column Table II. We can see that AU, RSSI and RR are top 3
factors in correlation coefficient.

2) Relative Information Gain: [15] points out that
correlation-based analysis cannot handle well those non-
monotone relationships such as Trx, RSSI, Ttx, Q and RPR in
Fig. 4 (c), (e), (f), (g) and (h). We choose relative information
gain, abbreviated as RIG, to solve this problem. RIG is used
to represent how much help there is in predicting Y with the
knowledge of X, a.k.a., how much of Y’s uncertainty will be
reduced when knowing X’s value. We first bin the value of DL
or UL into discretized values using 10ms interval to form Y.
For each kind of corresponding WiFi factors Xi, we calculate
the relative information gain. We repeat this for different APs.
The median value among different APs is shown in the third
column of Table II. Table II shows TPR has the largest RIG
0.11. Based on the definition of RIG, RIG represents the
reduction percentage of WiFi hop latency’s uncertainty after
knowing the value of certain WiFi factor, which ranges from
0 to 1. RIG equals to 0 if and only if WiFi hop latency
is independent with certain WiFi factor. Any value of RIG
which is larger than 0 shows that this WiFi factor is useful
for predicting WiFi hop latency. [16] lists three reasons for
TPR’s change: (i) a shift of RSSI, (ii) frame losses caused by
interference, which related to RR and AU in our work, (iii) rate
sampling algorithm which aimed to evaluate wireless channel
quality. This means that TPR is dependent on RSSI, RR and
AU and is a comprehensive metric taking AU, RR and RRSI
into consideration. This also explains why TPR has the highest
relative information gain in Table II. Note that the value will
be further amplified when combining other factors in Decision
Tree model in §V. Another thing we can learn from Table II
is that though AU has the highest Kendall score, it is not
the best candidate to predict DL. This can be explained using
Fig. 4(a). DL increases only when AU is larger than 0.5. There
is no obvious difference in DL when AU is smaller than 0.5.
Besides, both Trx and Ttx show little correlation with UL or
DL.

E. Summary of WiFi Factors Analysis

Here we summarize the key observations obtained from this
section:

• TPR has the highest relative information gain to predict
the WiFi hop latency.

• WiFi hop latency can only be affected when AU exceeds
a certain threshold. In our measurement, this threshold is
0.5.

• There is little correlation between WiFi hop latency and
average traffic demands in 10 seconds both in terms of
Kendall score and relative information gain.

V. MODELING WIFI HOP LATENCY

Because of the rate adaption method [16], TPR is dependent
on AU, RSSI and RR, and it is a good overall indicator for the
channel conditions. For many WiFi factors, such as Q, Trx
and Ttx, the relationship with WiFi hop latency can be non-
linear. How can we predict the WiFi hop latency given all these
factors? How many factors are enough to accurately predict the
WiFi hop latency? To address these challenges, in this section
we choose machine learning to model the relationship between
WiFi factors and WiFi hop latency. We first give a formal
definition of the problem that we want to solve. Then we
introduce the machine learning approach to solve this problem.
At last, we evaluate the effectiveness of our approach using
10-fold cross validation.

A. Problem Statement

Predicting WiFi hop latency using WiFi factors is important
for home AP owners to optimize or reconfigure their APs.
However, it is challenging to do so because different kinds of
network factors are interdependent and affect each other. We
want to jointly use the WiFi factors accessible from the home
APs to predict the DL, UL and two-way latency (i.e., DL+UL).
Therefore, we give the problem statement as follows: given a
set of WiFi factors, predict the WiFi hop latency, for both UL
and DL.



B. Modeling Approach

Considering the complex relationship between WiFi factors
in Table I and WiFi hop latency, we choose machine learning
as our tool to address the above problem. It is crucial to choose
the appropriate machine learning methods. An appropriate
method for our problem should have the following properties:

• The model should be accurate enough to predict the WiFi
latency using the WiFi factors.

• The model should be easily interpretable and provide
guidance for further optimization.

We model the problem as a binary classification problem,
and we label the latency into FAST and SLOW using a
threshold. [3] points out that 20∼30 ms last-mile latency will
cause the average page load time to exceed 2 seconds, which
will cause revenue decrease [2] [17]. A back-of-envelope
calculation using the above numbers shows that, WiFi hop
latency should keep below a stringent threshold of 20∼30ms in
order to satisfy the user expectations. Thus we set the threshold
to 25ms and 12.5ms for two-way latency (DL+UL) and one-
way latency (DL or UL), respectively.

After a pilot study, we choose Decision Tree from the
Python scikit-learn package [18] as our classifier method.
Decision Tree method outperforms Bayes and linear regression
methods in the pilot study. Bayes and linear regression are
not performing well on our dataset because the features in our
dataset (i.e., WiFi factors) are dependent on each other. The
other reason is that the relationship between WiFi factors and
latency is non-linear. However, the Decision Tree model has
no assumptions about independence among features and linear
relationship between features and latency.

C. Evaluation

We use 10-fold cross validation to evaluate the accuracy
of the Decision Tree models. We randomly divide the whole
dataset into two parts: 90% of data are used for training the
models and the rest 10% are used for evaluation. For the
evaluation, we first use the threshold to classify the measured
latency into two classes, FAST and SLOW. We use these as
the ground truth to evaluate the classification results obtained
by the Decision Tree model trained by us. We use the classical
ROC (Receiver Operating Characteristic) metrics to evaluate
these two models. This includes the accuracy (abbreviated
as ACC), true positive rate (abbreviated as TP) and false
positive rate (abbreviated as FP). The results are summarized
in Table III. We do the classification on DL, UL, DL+UL
respectively.

Decision Tree: For Decision Tree, we exclude Q, Trx, Ttx
from the feature set because of their low RIG. Besides, we set
the maximum tree depth as 15 and the minimum leaf size as
100. In this case, our Decision Tree achieves 78% accuracy
for classifying DL.

The accuracy can be greatly improved by using the Random
Forest model which votes between multiple trees. In our
experiment, by using a Random Forest model whose tree
number is 200, the accuracy can reach 81%. The accuracy

TABLE III
ACCURACY OF CLASSIFICATION METHOD.

Classification
Method Latency Type Accuracy TP FP

Decision Tree
DL 0.78 0.76 0.24
UL 0.68 0.67 0.27

DL+UL 0.77 0.79 0.31

and TP can further increase when increasing the tree number
and the depth of the tree in Random Forest model. However,
we do not recommend to do so because there will be huge
number of trees and each tree is very large, which cannot give
us insights behind the model. To give actionable insights to
AP owners, we plot the pruned decision tree in Fig. 5(a). We
use this model to classify DL into FAST and SLOW. The
number in brackets represents the population size falling into
each branch using the entire two month data set. By tracking
splitting nodes from root to certain leaf, we can know exactly
what happened to the classified packets. It is noteworthy that
the learning algorithm of Decision Tree in scikit-learn package
is a greedy algorithm [18], i.e., locally optimal decisions are
made at each node. TPR is chosen as the root of decision
tree in Fig. 5(a) as TPR has the largest overall information
gain in Table II. However, the nodes in the remaining layers
are decided using the information gain when combining the
upper layer nodes which lying in the path up to the root. This
combined information gain used to select the nodes differs
from the information gain for single factor in Table II. This
explains why AU only have the 5th relative information gain
in Table II but appear as the second layer of decision tree. In
other words, the combination of AU and TPR act as a better
split criterion than other factors.

VI. OPTIMIZATION ENABLED BY THE PREDICTION MODEL

In §V, we have trained a generic decision tree model using
our large dataset that provides enough Wi-Fi factors dynamics,
such that tree model in Fig. 5(a) can be applied to APs beyond
just ours. It helps understand, troubleshoot, and optimize WiFi
hop latency for APs in the wild. For a specific AP, we need to
map its specific packet’s WiFi factors onto the tree in Fig. 5(a),
and find its specific path from the root to the leaf. We highlight
two real examples to illustrate the power of this model based
optimization.

A. Three Steps for Optimization

We take three steps to optimize WiFi hop latency using the
generic Decision Tree model that has already been trained.
Firstly, we collect packets which contain WiFi factors from the
specific time and AP we want to diagnose. Then, we classify
these packets using the Decision Tree in Fig. 5(a) and track the
specific path to the SLOW leaf that has the largest fraction of
packets. All the factors on this path can form a most promising
candidate set to be optimized. Note that we do not need to
compare the prediction results in this step with the measured
delay of each packet. At last, an AP owner can attempt to
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Fig. 5. (a). Pruned Decision tree for classifying DL into FAST and SLOW
categories. (b). %branches of OAP WiFi factors fall into before and after
relocation. (c). %branches of DAP WiFi factors fall into before and after
channel selection.

adjust the value of the factors in this set, e.g., increasing the
transmitting power, switching the channel, and relocating the
APs. For the majority of cases, just one iteration of these three
steps works well, and for the rest few, several iterations may
be needed to reach a good optimization.

The three steps of optimization give the AP owners a
candidate and priority list when diagnosing his AP. Without the
Decision Tree model, AP owners often have no idea what will
happen if they change the value of one certain WiFi factor. Our
model can predict the possible WiFi hop latency by assuming
the value of certain WiFi factor has changed before taking real
actions.

B. Relocating the AP

The owner of an office AP (labeled as OAP) complained
about long latency and tried several ways to reduce latency,
including increasing the OAP’s transmitting power and switch-
ing between different channels (mainly affects AU), but neither
of these worked. Our Decision Tree-based optimization helped
solve the problem. First, we collected the packets with WiFi
factors from OAP in 24 hours and classified the packets using
the model in Fig. 5(a). We show the fraction of packets fall
into each branch in Fig. 5(b)’s second row. This table informs
us that most of the time (58%) OAP is in the SLOW class
branch b6, which means that OAP’s TPR > 55 Mbps, 0.42 <
AU ≤ 0.55 and RSSI ≤ −45 dbm.

We cannot change TPR manually because it can be adjusted
only in the vendor chips. As RSSI indicates the signal strength

 0

 50

 100

 0.1  1  10  100  1000  10000

C
D

F(
%

)

DL (ms)

1 week after

1 week before
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Fig. 7. CDF of AU and DL one week before and one week after the channel
selection.

of user equipment (UE) received by OAP, it is decided by
UE’s transmitting power and the distance between UE and
OAP. Increasing the transmitting power of OAP can not help
with RSSI increase. We find that all the UEs are close to each
other but far away from the OAP, which is in another room.
As the UEs have to stay in a fixed desk space, we relocated
OAP closer to the UEs, and the result is shown in Fig. 5(b)’s
third row. Now most of time the packets fall into branch b7,
the FAST class. We draw the CDF of DL before and after
optimization in Fig. 6, where the median latency is reduced
from 50ms to 10ms, which achieves a 5× improvement. It
is noteworthy that, in both this and the next subsections, we
measure DL before and after optimization both for one week
time to eliminate the differences caused by diurnal traffic
variation.

C. Channel Selection

A dorm AP (labeled as DAP) owner reported frequently
long latency experience from 23:00 to 24:00, the rush hour of
T campus dorm area. We classified the WiFi factors of packets
collected from 23:00 to 24:00 to Decision Tree in Fig. 5(a).
We counted the number of packets classified into each branch
and calculated the fraction in Fig. 5(c). From the second row
of Fig. 5(c) we notice about 82% of cases are classified into
SLOW class branch b11, which means that TPR > 55 Mbps,
AU > 0.55, RR ≤ 0.42 and RPR ≤ 62Mbps.

After detecting different channels around DAP, we found
DAP currently was in channel 6. The average AU of channel 6
is 0.6. However, the average AU of channel 1 was lower (0.52).
There was high possibility the AU of channel 1 will stay below
0.55 (one splitting condition in Decision Tree) after switching
to channel 1. Also recall that AU starts to greatly affect latency
at 0.5 according to Fig. 4(a). So we switched DAP to channel



1 the next day and the classification results of data from
23:00 to 24:00 are shown in Fig. 5(c)’s third row. Now about
82% of packets are falling into the FAST class branch b7.
We also draw the CDF of AU and DL before and after the
channel selection. The results are shown in Fig.7. From Fig.7
we can see that after channel selection, the largest DL (also
largest in rush hour) is 50 ms compared to 250 ms before
optimization. This improvement confirms the effectiveness of
our optimization. Without our model, switching to a channel
with only slightly lower AU (from 0.6 to 0.52) would not have
been considered as an effective optimization.

VII. RELATED WORK

The methodology we used to measure the WiFi hop latency
is inspired by [17] and is similar to [19]. The measurements
on WiFi hop latency show the consistent results with [19]. We
make further improvement to separate the downlink and uplink
WiFi hop latency, i.e., DL and UL. Furthermore, we also use
the decision tree model to predict the WiFi hop latency which
shows great help in the optimization work.

WiFi Measurement. SHAMAN [11] measured the DL of
WiFi network by capturing and merging packets on both
wired and wireless interfaces. This will fail when the home
APs in the wild encrypt the wireless packets using the SSID
password. We make it practical using a minor modification in
the driver of OpenWrt. Xian Chen’s work [20] measured the
WiFi latency by capturing the outgoing and incoming packets
at the campus gateway router. It cannot measure the latency of
single AP-CLIENT pair behind the home AP. [14], [16] and
[21] deploy routers in different places and do the exhaustive
measurements but they are all lack of investigation on WiFi
hop latency.

Optimization Guidance. [15], [22] use the machine learn-
ing methods to study the relationships between mobile
Web/Video QoE with cellular network factors or video quality
respectively, which differ from the WiFi factors in residential
WiFi environment.

VIII. CONCLUSION

Based on measurement results in a 47-AP real world deploy-
ment, this paper provides a first look into WiFi hop latency
in the wild. This paper presents the first practical approach
to break down round trip network latency on APs, without
any user-side assistance or vendor chip support. Furthermore,
we propose a Decision Tree based model to help understand,
troubleshoot, and optimize WiFi hop latency for APs in the
wild beyond just ours.

Our measurement results show that, WiFi, the primary
last-hop Internet access method, has become the weakest
link in the round trip network latency in many cases. This
shows the urgency for the research community to spend more
efforts on WiFi hop latency. In this paper, we conduct the
systematic work to understand the WiFi hop latency in the
wild. We believe it is a significant step to go from fundamental
measurements to fully automated optimization of WiFi hop
latency.
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